Kako je ovo tuning forum, a ovakav tekst nisam nasao, bilo bi dobro objasniti principe i osnove rada, kao i tipove turno punjaca....
Ako ovakav tekst postoji, brisite temu...
Takodje ako smatrate potrebnim, prebacite je pod topic Osnovi rada motora...
Tekst i slike preuzeti sa www.bug.hr
Deo I
Koliko god mi filozofirali o nekakvim viševentilskim motorima, dorađenoj elektronici i tko zna čemu, ozbiljna igra sa snagom započinje tek s primjenom puhalice
Iako vjerujemo kako su se gotovo svi autoljupci barem jednom negdje sreli s temom turbopunjača, moramo misliti i na one koji to nisu. Uostalom, ovo je ipak škola za početnike. No i vama koji mislite da su puhalice mačji kašalj, savjetujemo jedno solidno ponavljanje gradiva. Stoga, sjednite u klupe!

Većina današnjih motora koji pokreću automobile koristi tzv. "atmosferski usis". Vjerojatno ste, ne jednom, čuli za nekakve atmosferske motore, barem u pričama o Formuli 1. No, dakle. Poznato nam je iz prijašnjih nastavaka da je zrak iz atmosfere potrebno nekako ugurati u cilindar. Silu koja se za to brine nazivamo Atmosferski tlak i radi se o uobičajenom pritisku zraka koji nas okružuje na površini mora (atmosferski tlak iznosi 14,7 psi = 101,3 kPa = 1 bar). Klip u svojem gibanju od gornje mrtve točke stvara u cilindru podtlak, obično nazvan i (djelomični) vakum. Taj podtlak dovodi do razlike između atmosferskog pritiska i onog u usisnom sustavu motora (koji je pri usisnom taktu manji od atmosferskog). Upravo zbog toga, naša sila - Atmosferski tlak, tjera zrak u usisni sustav i, ovisno o otvorenosti leptira, u sam cilindar. No, poznato nam je i da je za izgaranje neke količine goriva u cilindru potrebna i određena količina zraka. Logično je da, želimo li iz motora izvući veću snagu, moramo u njemu sagorjeti i više goriva. No, za taj je proces potrebno i više zraka, a atmosferski ga tlak ne može ubaciti u usis više nego li to određuje spomenuta razlika pritisaka. Tu u pomoć uskaču uređaji za prednabijanje zraka koje dodajemo atmosferskim motorima kako bi im povećali snagu, zadržavajući pri tome isti radni obujam.

Slika. 1 - Shematski prikaz turbopunjača
Sve uređaje za prednabijanje zraka zajedničkim imenom nazivamo "kompresori", a razlikujemo turbokompresore (pokretane strujom ispušnih plinova) te mehaničke kompresore (pokretane remenom ili lancem s koljenastog vratila). U prvom nastavku priče o prednabijanju reći ćemo riječ-dvije o turbokompresorima (turbopunjačima). Princip rada ove vrste kompresora vidljiv je na slici 1. Turbokompresori se sastoje od dva osnovna dijela, a to su: turbina kompresora te pogonska turbina. Kompresorska turbina u stvari je kotač na kojem se nalaze lopatice. Rotacija tih lopatica pokreće zrak koji je pod atmosferskim tlakom ušao u kompresor iz dovoda (cijevi koja vodi od filtera zraka ili sl.) te ga pod povećanim tlakom tjera dalje prema motoru, odnosno, cilindrima. Na drugom kraju osovine na kojoj se nalazi kompresorska turbina smještena je pogonska turbina. I ova turbina ima kotač s lopaticama a pokreće ju struja ispušnih plinova koja dolazi iz cilindara (ispušne grane motora). Ispušni plinovi tako prolaze preko lopatica pogonske turbine što izaziva njihovu rotaciju, nakon čega napuštaju turbokompresor putujući dalje, u ispušni sustav. Kako su pogonska i kompresorska turbina spojene jednom osovinom, struja ispušnih plinova posredno pokreće i kompresorsku turbinu. Jasno je iz samog načela rada turbokompreora da kao rezultat na njegovom izlazu dobivamo struju zraka pod pritiskom većim od atmosferskog. Tako je u cilindre moguće ubaciti više zraka, a samim time i više goriva koje će u potpunosti sagorjeti. Rezultat svega je značajno povećanje snage motora.

Slika. 2 - Kučišta pogonske i kompresorske turbine
Jasno je da se s povećanjem pritiska na papučicu akceleratora (dodavanjem gasa) povećava i brzina rada motora, a samim time i brzina strujanja ispušnih plinova. Rezultat toga je i povećanje brzine okretanja turbina u turbokompresoru (brzine dostižu i do 120.000 o/min). Ipak, kao i toliko puta do sada, moramo zadovoljiti neke kompromise. Turbokompresor je proračunan da daje neke određene vrijednosti pritiska (prednabijanja) na izlazu iz turbine pri određenim brzinama rada motora. No, jasno je da njegova uloga mora pokrivati što veći raspon brojeva o/min. Problem se javlja kada motor natjeramo u područja visokih okretaja. Turbokompresor, koji je proračunan da daje potreban pritisak i pri nižim brojevima o/min, pri izrazito visokim brzinama može početi isporučivati previsoki pritisak prednabijanja. Kako bi se spriječile moguće štete koje bi ovako visok pritisak uzrokovao, uz turbokompresore se ugrađuju i "wastegate" (dump-valve) sigurnosni ventili (zlatni dio na vrhu turbokompreora - početna slika). Uloga ovih ventila je da oslobode dio pritiska s izlaznog dijela turbokompresora (puštajući ga u atmosferu) i tako smanje tlak u usisnom sustavu. Wastegate ventili obično su pokretani pneumatskim putem pomoću membrane (dijafragme) koja se nalazi pod pritiskom proizvedenim u turbini. Kada ovaj pritisak dostigne najveću proračunanu vrijednost, membrana ovog ventila pomiče polugu koja pak otvara tzv. "bypass" prolaz. Bypass je u stvari cijev kroz koju suvišni pritisak napušta usisni sustav motora. Valja napomenuti kako su wastegate ventili u nekim automobilima pokretani i elektromagnetski, uz kontrolu središnjeg računala.

Slika 3. Turbokompresor promenljive geometrije
Na slici 3 prikazan je turbokompresor promjenjive geometrije. Naime, osim prevelikog pritiska, u prednabijanju se javlja i problem poznat kao "kašnjenje" (turbo-lag). Svi koji su vozili automobile s turbokompresorima stalne geometrije poznaju efekt koji se javlja pri naglom dodavanju gasa u nižim brojevima okretaja. Kako je cijeli kompresor proračunan za neke srednje vrijednosti pritiska ispušnih plinova, jasno je da pri niskim brojevima o/min tlak u ispuhu nije dovoljan da zavrti lopatice pogonske turbine na brzinu potrebnu za ostvarivanje potrebnog pritiska prednabijanja. U "običnim" se turbo-automobilima tako može osjetiti nagli udar (naglo ubrzanje) koji dolazi kada se tlak u ispuhu dovoljno poveća. Kako bi se izbjegli ovakvi nedostaci i postigao efikasan rad turbopunjača pri nižim brojevima okretaja motora, izmišljene su pogonske turbine s krilcima promjenjive geometrije. Ovakva (dodatna) krilca, upravljana središnjim računalom, usmjeravaju struju ispušnih plinova na lopatice pogonske turbine kako bi se najbolje iskoristio raspoloživi pritisak struje ispuha te poboljšalo prednabijanje i pri nižim brojevima okretaja. Drugi način rješavanja ovog problema je u postavljanju dvaju turbopunjača (bi-turbo) manjih dimenzija čije su mase pokretnih dijelova manje te postižu potrebnu brzinu vrtnje i uz relativno sporu struju ispušnih plinova.
Ako ovakav tekst postoji, brisite temu...
Takodje ako smatrate potrebnim, prebacite je pod topic Osnovi rada motora...
Tekst i slike preuzeti sa www.bug.hr
Deo I
Koliko god mi filozofirali o nekakvim viševentilskim motorima, dorađenoj elektronici i tko zna čemu, ozbiljna igra sa snagom započinje tek s primjenom puhalice
Iako vjerujemo kako su se gotovo svi autoljupci barem jednom negdje sreli s temom turbopunjača, moramo misliti i na one koji to nisu. Uostalom, ovo je ipak škola za početnike. No i vama koji mislite da su puhalice mačji kašalj, savjetujemo jedno solidno ponavljanje gradiva. Stoga, sjednite u klupe!

Većina današnjih motora koji pokreću automobile koristi tzv. "atmosferski usis". Vjerojatno ste, ne jednom, čuli za nekakve atmosferske motore, barem u pričama o Formuli 1. No, dakle. Poznato nam je iz prijašnjih nastavaka da je zrak iz atmosfere potrebno nekako ugurati u cilindar. Silu koja se za to brine nazivamo Atmosferski tlak i radi se o uobičajenom pritisku zraka koji nas okružuje na površini mora (atmosferski tlak iznosi 14,7 psi = 101,3 kPa = 1 bar). Klip u svojem gibanju od gornje mrtve točke stvara u cilindru podtlak, obično nazvan i (djelomični) vakum. Taj podtlak dovodi do razlike između atmosferskog pritiska i onog u usisnom sustavu motora (koji je pri usisnom taktu manji od atmosferskog). Upravo zbog toga, naša sila - Atmosferski tlak, tjera zrak u usisni sustav i, ovisno o otvorenosti leptira, u sam cilindar. No, poznato nam je i da je za izgaranje neke količine goriva u cilindru potrebna i određena količina zraka. Logično je da, želimo li iz motora izvući veću snagu, moramo u njemu sagorjeti i više goriva. No, za taj je proces potrebno i više zraka, a atmosferski ga tlak ne može ubaciti u usis više nego li to određuje spomenuta razlika pritisaka. Tu u pomoć uskaču uređaji za prednabijanje zraka koje dodajemo atmosferskim motorima kako bi im povećali snagu, zadržavajući pri tome isti radni obujam.

Slika. 1 - Shematski prikaz turbopunjača
Sve uređaje za prednabijanje zraka zajedničkim imenom nazivamo "kompresori", a razlikujemo turbokompresore (pokretane strujom ispušnih plinova) te mehaničke kompresore (pokretane remenom ili lancem s koljenastog vratila). U prvom nastavku priče o prednabijanju reći ćemo riječ-dvije o turbokompresorima (turbopunjačima). Princip rada ove vrste kompresora vidljiv je na slici 1. Turbokompresori se sastoje od dva osnovna dijela, a to su: turbina kompresora te pogonska turbina. Kompresorska turbina u stvari je kotač na kojem se nalaze lopatice. Rotacija tih lopatica pokreće zrak koji je pod atmosferskim tlakom ušao u kompresor iz dovoda (cijevi koja vodi od filtera zraka ili sl.) te ga pod povećanim tlakom tjera dalje prema motoru, odnosno, cilindrima. Na drugom kraju osovine na kojoj se nalazi kompresorska turbina smještena je pogonska turbina. I ova turbina ima kotač s lopaticama a pokreće ju struja ispušnih plinova koja dolazi iz cilindara (ispušne grane motora). Ispušni plinovi tako prolaze preko lopatica pogonske turbine što izaziva njihovu rotaciju, nakon čega napuštaju turbokompresor putujući dalje, u ispušni sustav. Kako su pogonska i kompresorska turbina spojene jednom osovinom, struja ispušnih plinova posredno pokreće i kompresorsku turbinu. Jasno je iz samog načela rada turbokompreora da kao rezultat na njegovom izlazu dobivamo struju zraka pod pritiskom većim od atmosferskog. Tako je u cilindre moguće ubaciti više zraka, a samim time i više goriva koje će u potpunosti sagorjeti. Rezultat svega je značajno povećanje snage motora.

Slika. 2 - Kučišta pogonske i kompresorske turbine
Jasno je da se s povećanjem pritiska na papučicu akceleratora (dodavanjem gasa) povećava i brzina rada motora, a samim time i brzina strujanja ispušnih plinova. Rezultat toga je i povećanje brzine okretanja turbina u turbokompresoru (brzine dostižu i do 120.000 o/min). Ipak, kao i toliko puta do sada, moramo zadovoljiti neke kompromise. Turbokompresor je proračunan da daje neke određene vrijednosti pritiska (prednabijanja) na izlazu iz turbine pri određenim brzinama rada motora. No, jasno je da njegova uloga mora pokrivati što veći raspon brojeva o/min. Problem se javlja kada motor natjeramo u područja visokih okretaja. Turbokompresor, koji je proračunan da daje potreban pritisak i pri nižim brojevima o/min, pri izrazito visokim brzinama može početi isporučivati previsoki pritisak prednabijanja. Kako bi se spriječile moguće štete koje bi ovako visok pritisak uzrokovao, uz turbokompresore se ugrađuju i "wastegate" (dump-valve) sigurnosni ventili (zlatni dio na vrhu turbokompreora - početna slika). Uloga ovih ventila je da oslobode dio pritiska s izlaznog dijela turbokompresora (puštajući ga u atmosferu) i tako smanje tlak u usisnom sustavu. Wastegate ventili obično su pokretani pneumatskim putem pomoću membrane (dijafragme) koja se nalazi pod pritiskom proizvedenim u turbini. Kada ovaj pritisak dostigne najveću proračunanu vrijednost, membrana ovog ventila pomiče polugu koja pak otvara tzv. "bypass" prolaz. Bypass je u stvari cijev kroz koju suvišni pritisak napušta usisni sustav motora. Valja napomenuti kako su wastegate ventili u nekim automobilima pokretani i elektromagnetski, uz kontrolu središnjeg računala.

Slika 3. Turbokompresor promenljive geometrije
Na slici 3 prikazan je turbokompresor promjenjive geometrije. Naime, osim prevelikog pritiska, u prednabijanju se javlja i problem poznat kao "kašnjenje" (turbo-lag). Svi koji su vozili automobile s turbokompresorima stalne geometrije poznaju efekt koji se javlja pri naglom dodavanju gasa u nižim brojevima okretaja. Kako je cijeli kompresor proračunan za neke srednje vrijednosti pritiska ispušnih plinova, jasno je da pri niskim brojevima o/min tlak u ispuhu nije dovoljan da zavrti lopatice pogonske turbine na brzinu potrebnu za ostvarivanje potrebnog pritiska prednabijanja. U "običnim" se turbo-automobilima tako može osjetiti nagli udar (naglo ubrzanje) koji dolazi kada se tlak u ispuhu dovoljno poveća. Kako bi se izbjegli ovakvi nedostaci i postigao efikasan rad turbopunjača pri nižim brojevima okretaja motora, izmišljene su pogonske turbine s krilcima promjenjive geometrije. Ovakva (dodatna) krilca, upravljana središnjim računalom, usmjeravaju struju ispušnih plinova na lopatice pogonske turbine kako bi se najbolje iskoristio raspoloživi pritisak struje ispuha te poboljšalo prednabijanje i pri nižim brojevima okretaja. Drugi način rješavanja ovog problema je u postavljanju dvaju turbopunjača (bi-turbo) manjih dimenzija čije su mase pokretnih dijelova manje te postižu potrebnu brzinu vrtnje i uz relativno sporu struju ispušnih plinova.
Comment